

DIPARTIMENTO DEI VIGILI DEL FUOCO, DEL SOCCORSO PUBBLICO E DELLA DIFESA CIVILE

DIREZIONE CENTRALE PER LA PREVENZIONE E LA SICUREZZA TECNICA

AREA PROTEZIONE PASSIVA

SETTORE RESISTENZA AL FUOCO

INDICE

1	PRE	MESSA	3
2	PRO	GETTAZIONE DELLA PROVA	4
	2.1	Scelta dei materiali da costruzione	5
	2.2	Definizione della geometria della volta	6
	2.3	Definizione dello schema statico e del layout dei punti di misura	7
	2.4	Progettazione del carico	8
	2.5	Calcolo del tempo di resistenza al fuoco	
	2.6	Progettazione della centina	
	2.7	Realizzazione della centina e della volta	
	2.8	Verifica sperimentale delle caratteristiche dei materiali	27
	2.9	Verifica sperimentale della volta in condizioni di incendio standardizzate	
3		CLUSIONI	
4	PRO	SPETTIVE FUTURE	36
5	RINC	GRAZIAMENTI	37
6	RIFE	RIMENTI BIBLIOGRAFICI	38
Αl	PPENDI	CE – TABULATI SPERIMENTALI	39

1 PREMESSA

Pur rappresentando le volte in muratura una tipologia costruttiva piuttosto ricorrente nell'ambito del panorama edilizio italiano, i metodi di verifica di resistenza al fuoco disponibili necessitano di un'opportuna verifica sperimentale.

Ai fini della classificazione di resistenza al fuoco di elementi strutturali, il decreto del Ministro dell'Interno 16 febbraio 2007 [1] prevede, in linea del tutto generale, il metodo tabellare, sperimentale ed analitico. Al momento, il solo metodo analitico può essere impiegato per la certificazione di elementi voltati in muratura. In particolare, la circolare DCPREV 4638 del 5/4/2013 [2], consente la possibilità di impiegare il metodo dell'Annesso C all'Eurocodice EN 1996-1-2 [3] (metodo delle sezioni ridotte) ponendo cautelativamente pari a zero la resistenza della zona a temperatura intermedia.

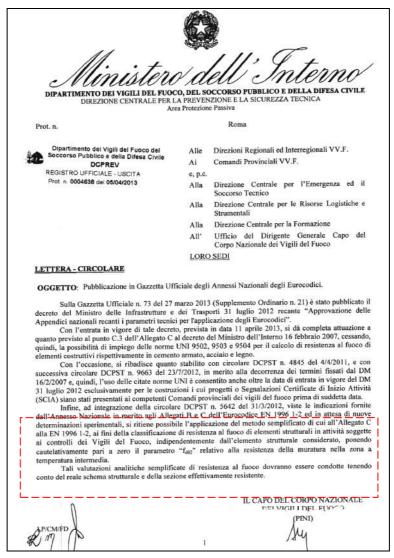


Figura 1 – La circolare DCPREV n. 4638 [2]

2 PROGETTAZIONE DELLA PROVA

La prova è finalizzata alla verifica sperimentale della correttezza del calcolo predittivo del tempo di resistenza di una volta muraria applicando il metodo di verifica semplificato dell'Eurocodice EN 1996-1-2 integrato dall'applicazione della circolare DCPREV 4638 del 4/4/2013 (figura 1). La volta viene progettata seguendo i criteri ordinari di calcolo a freddo e successivamente si effettua il calcolo della resistenza a caldo.

L'esperimento consta delle seguenti fasi descritte nel dettaglio nei paragrafi successivi:

- 1. Scelta dei materiali da costruzione
- 2. Definizione della geometria della volta
- 3. Definizione dello schema statico e del layout dei punti di misura
- 4. Progettazione del carico
- 5. Calcolo del tempo di resistenza al fuoco
- 6. Progettazione della centina
- 7. Realizzazione della centina e della volta
- 8. Verifica sperimentale delle caratteristiche dei materiali
- 9. Verifica sperimentale della volta in condizioni di incendio standardizzate
- 10. Analisi delle evidenze sperimentali

2.1 Scelta dei materiali da costruzione

Per la realizzazione della prova si impiegano i seguenti materiali da costruzione, comunemente impiegati nel settore edilizio:

- Blocchi di laterizio pieno di dimensioni 5,5 x 12 x 25 cmxcmxcm (f_{b,k} = 40 N/mm²)
- Malta cementizia pre-miscelata di classe M5

Dalla tabella 11.10.V delle NTC 2008 [4] (nel testo tabella 1) risulta la resistenza caratteristica della muratura: $f_k = 10.4 \text{ N/mm}^2$

Tabella 11.10.V - Valori di f. per murature in elementi artificiali pieni e semipieni (valori in N/mm²)

Resistenza caratteristica a compressione f_{bk} dell'elemento	Tipo di malta						
N/mm ²	M15	M10	M5	M2,5			
2,0	1,2	1,2	1,2	1,2			
3,0	2,2	2,2	2,2	2,0			
5,0	3,5	3,4	3,3	3,0			
7,5	5,0	4,5	4,1	3,5			
10,0	6,2	5,3	4,7	4,1			
15,0	8,2	6,7	6,0	5,1			
20,0	9,7	8,0	7,0	6,1			
30,0	12,0	10,0	8,6	7,2			
40,0	14,3	12,0	10,4				

Tabella 1 – Determinazione della resistenza caratteristica a compressione della muratura

La resistenza di progetto a compressione, per le verifiche a freddo, si ricava dalla seguente relazione: $f_d = f_k / \gamma_M$

Il coefficiente parziale di sicurezza γ_M si ricava dalla tabella 2 tratta dalle NTC 2008 [4]:

Tabella 4.5.II. Valori del coefficiente γ_M in funzione della classe di esecuzione e della categoria degli elementi resistenti

Materiale	Classe di esecuzione			
	11	2		
Muratura con elementi resistenti di categoria I, malta a prestazione garantita	2,0	2,5		
Muratura con elementi resistenti di categoria I, malta a composizione prescritta	2,2	2,7		
Muratura con elementi resistenti di categoria II, ogni tipo di malta	2,5	3,0		

Tabella 2 – Determinazione coefficiente parziale di sicurezza a freddo per la muratura

Essendo la muratura realizzata in laboratorio, si impiega la classe di esecuzione 1; la malta è a prestazione garantita (premiscelato M5) e gli elementi sono di categoria I. Il coefficiente parziale di sicurezza è assunto pari a 2,0.

La resistenza di progetto a compressione a freddo è pertanto pari a:

$$f_d = f_k / \gamma_M = 10.4 / 2.0 = 5.2 \text{N/mm}^2$$

La resistenza di progetto a compressione in condizioni di incendio ($\gamma_{M,fi}$ = 1,0) è pari a :

$$f_{d,fi} = f_k / \gamma_{M,fi} = 10.4 / 1.0 = 10.4 \text{N/mm}^2$$

2.2 Definizione della geometria della volta

La volta in muratura è realizzata sulla bocca del forno sperimentale orizzontale impostandosi, alle reni, in corrispondenza dell'estradosso delle suole inferiori delle travi HE200B poste a copertura del forno: il dislivello tra la superficie di imposta della volta e l'intradosso del piatto del sistema di carico del forno è di 724mm.

I vincoli geometri del forno, impongono la realizzazione di una volta con mattoni messi di taglio (spessore di 12cm) con luce netta di 161cm e freccia netta di 46,5 cm. Il franco netto tra estradosso volta ed intradosso sistema di carico è di 13,8cm al colmo. La lunghezza dell'arco di intradosso (L_{int}) è di 195cm.

Per il sostegno della volta e delle maestranze durante le fasi di realizzazione, viene realizzata una centina in legno secondo lo standard VVF derivato dal vademecum STOP [5] con tipologia C1 impiegando ritti in abete di sezione 10 x 10 cmxcm e tavolame di ripartizione opportunamente tagliato. La volta è chiusa frontalmente con lastre di cartongesso.

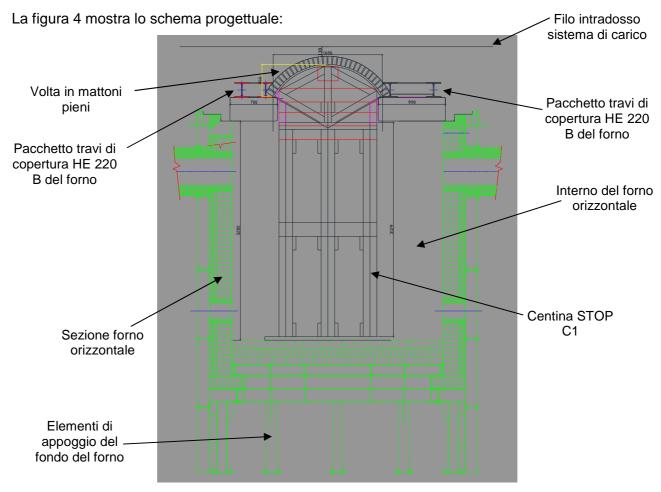


Figura 2 – Layout della prova (sezione trasversale)

2.3 Definizione dello schema statico e del layout dei punti di misura

Non avendo lo spazio sufficiente per la costruzione di un rinfianco della volta all'estradosso e lateralmente, il carico è realizzato mediante due forze concentrate simmetricamente ripartite secondo la direzione longitudinale della volta a 50cm circa di distanza dall'asse (figura 3).

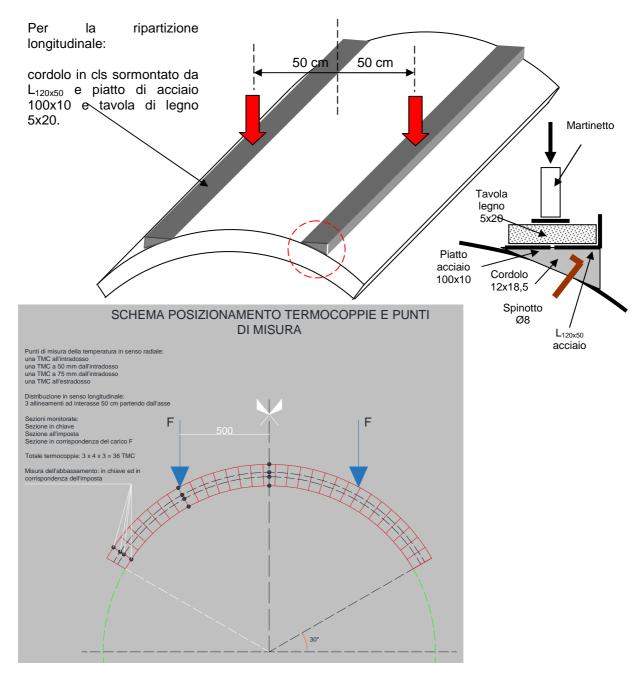


Figura 3 – Layout punti di misura e di applicazione del carico

2.4 Progettazione del carico

La quantificazione del carico da applicare è effettuata applicando il teorema statico dell'analisi limite di seguito sinteticamente enunciato:

Sia s·F un insieme di forze interne applicate ad una struttura.

Se esiste un insieme di forze interne staticamente ammissibile (ossia in equilibrio interno ed in equilibrio con i carichi applicati), compatibile con la resistenza del materiale, il moltiplicatore delle forze applicate è un minorante del carico di collasso della struttura (moltiplicatore staticamente ammissibile). Il moltiplicatore di collasso è il massimo moltiplicatore staticamente ammissibile.

Si riporta uno stralcio del testo citato in [6] da cui il teorema statico è tratto:

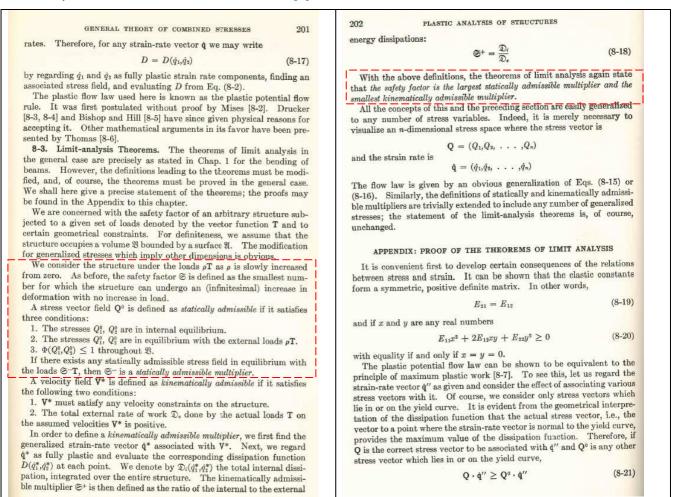


Figura 4 - Stralcio dal testo "Plastic analysis of structures" [6]

Con riferimento alla volta a botte, si applica una coppia di forze concentrate unitarie e si traccia, per tentativi, il poligono funicolare di ciascun sistema di forze concentrate incrementate da un moltiplicatore dei carichi. Ciascun sistema di forze (e quindi il relativo moltiplicatore) risulta staticamente ammissibile se la massima tensione di compressione è non superiore alla resistenza a compressione del materiale. La predisposizione del poligono funicolare garantisce nei confronti della verifica della compatibilità dell'equilibrio esterno.

Si fa osservare che non sarebbe esclusa la possibilità di parzializzazione della sezione a condizione che la verifica di compatibilità con la resistenza del materiale sia rispettata. Si preferisce una progettazione con criterio di assenza di parzializzazione, più in linea con la progettazione ordinaria a freddo delle volte.

Il moltiplicatore dei carichi viene fatto crescere fino all'attingimento della condizione di tangenza del poligono funicolare con il nocciolo centrale di inerzia della sezione muraria.

Nella figura 7 è riportata la costruzione del poligono funicolare per la verifica a freddo della volta. È evidente la condizione di tangenza al nocciolo centrale di inerzia.

Lo spessore (t) della volta è di 12cm. Lo spessore del nocciolo centrale di inerzia è di 4cm (il raggio di inerzia della sezione rettangolare è infatti pari a t/6 = 2cm).

Il peso dell'unità di volume della volta è stimato in $18kN/m^3$ (NTC 2008 tab. 3.1.I). Il peso della volta (L = 2,0m) è pari a:

 $P = p.s. x t x L_{int} x 1,0 = 18 x 0,12 x 1,95 x 2,0 = 8,4kN$

La volta è suddivisa in 16 spicchi (conci). Ciascun concio ha il seguente peso:

 $P_{concio} = P/16 = 8.4 / 16 = 0.53kN$

In figura 7 è mostrato il poligono funicolare delle forze (tangente al nocciolo centrale di inerzia) ottenuto con una coppia di forze concentrate pari a:

F = 9,2kN

Pur essendo il carico in condizioni di incendio inferiore a quello applicato a freddo (in genere al massimo il 70%), per le finalità della prova si applica il medesimo carico di progetto.

Dal valore della forza da applicare viene decurtato il peso del sistema di ripartizione:

L_{120x50}: 0,27kN; Piatto 100x10: 0,16kN; Tavolone 5x20: 0,07kN; Cordolo: 0,40kN;

Sommano: 0,90kN

Forza da applicare: 8,3kN

Si osserva che il valore della forza da applicare da parte di ciascun martinetto è compatibile con il minimo erogabile dal sistema di carico del forno (pari proprio a 8,3kN per pistone).

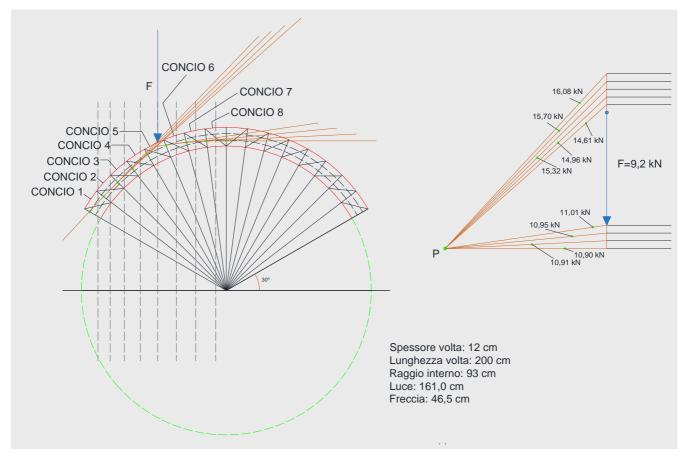


Figura 5 – Poligono funicolare delle forze per la verifica a freddo della volta a botte

Il poligono funicolare è ovviamente costruito garantendo la condizione di simmetria dello schema statico con spinta orizzontale in chiave. In corrispondenza delle interfacce tra i conci e, in particolare alle reni (sezione di imposta della volta), sono presenti componenti tangenziali della spinta che sono trascurate. A vantaggio di sicurezza le forze agenti alle interfacce tra i conci di volta sono considerate ortogonali a tali superfici.

In corrispondenza delle reni la reazione vincolare, determinata con metodo grafico, vale:

R = 16,08kN

In caso di curva delle pressioni (P) tangente al nocciolo la massima tensione di compressione si ottiene dalla relazione [7]:

 $\sigma_{max} = 2P/A$

In caso di curva delle pressioni (P) esterna al nocciolo e distante dal bordo estremo delle sezione reagente di una distanza pari a u, la sezione si parzializza e la massima tensione di compressione si ottiene dalla relazione [7]:

 $\sigma_{\text{max}} = 2P/(3u \cdot L)$ (essendo L la lunghezza della volta)

Essendo il poligono funicolare tangente al nocciolo centrale di inerzia della sezione trasversale alle reni, in chiave ed in corrispondenza della sezione di applicazione del carico, si effettua la verifica a pressoflessione della sezione in corrispondenza dell'azione massima (reni):

 $\sigma_{max} = 2P/A = 2.16080/(120.2000) = 0.13N/mm^2 < 5.2N/mm^2$.

La verifica è soddisfatta

2.5 Calcolo del tempo di resistenza al fuoco

Per il calcolo del tempo di resistenza al fuoco si adotta, come detto in premessa, il metodo semplificato dell'appendice C all'Eurocodice EN 1996-1-2 [3] integrato dalla circolare DCPREV 4638 [2].

Il metodo prevede la parzializzazione della sezione resistente in funzione dei valori della temperatura massima raggiunta nella sezione trasversale. In particolare, per le murature in elementi artificiali e malta, la norma europea prevede i valori della temperatura limite evidenziati nella tabella 3:

Values of constant, c, and temperature θ_1 and θ_2 by masonry material

Masonry units and mortar (surface	Values of constant	Temperature °C		
unprotected) according to 1.1 (2)	С	θ_2	θ_1	
Clay units with general purpose mortar	C_{cl}	600	100	
Calcium silicate units with thin layer mortar	Ccs	500	100	
Lightweight aggregate units (pumice) with general purpose mortar	Cla	400	100	
Dense aggregate units with general purpose mortar	C _{da}	500	100	
Autoclaved aerated units with thin layer mortar	Caac	700	200	

Tabella 3 – Valori della temperatura limite per la verifica a caldo di murature (Annesso C EN 1996-1-2)

Al di sotto dei 100°C il materiale può essere considerato pienamente resistente al di sopra dei 600°C il materiale non offre resistenza meccanica, mentre tra i 100°C ed i 600°C il materiale ha una resistenza intermedia che, non essendo specificata dall'Eurocodice né dagli Annessi Nazionali degli stessi [8], può essere cautelativamente posta pari a zero in virtù della circolare DCPREV 4638 [2].

Si effettua la verifica della volta sotto carico dopo un tempo di esposizione all'incendio standard di 30, 45 e 60 minuti. Ai fini dell'applicazione del metodo, è necessario conoscere la posizione delle isoterme dopo i periodi di tempo ipotizzati. A tale fine possono essere impiegati programmi di calcolo ad hoc oppure il grafico riportato in figura 6 tratto dall'appendice C all'Eurocodice EN 1996-1-2 [3]:

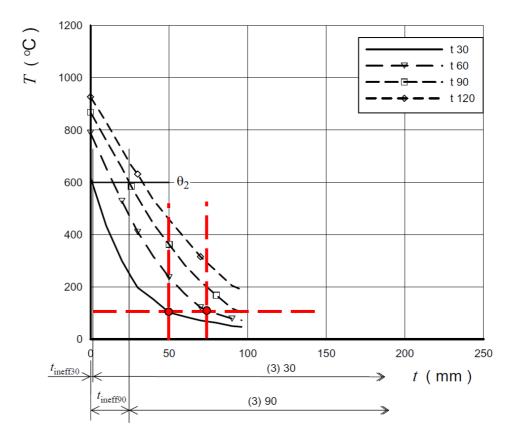


Figure C.3(a): Clay masonry, gross density 1 000 – 2000 kg/m³

Figura 6 – Mappatura termica per la verifica a caldo di murature [3]

Sempre nella figura 6 sono evidenziate le posizioni delle isoterme a 100°C dopo 30 e 60 minuti di esposizione alla curva standard ISO 834: 50 mm dopo 30 minuti e 75 mm dopo 60 minuti. La presenza di termocoppie a tali profondità nella volta è finalizzata ad una verifica della temperatura in tali punti. Si stima cautelativamente in 65 mm la profondità dell'isoterma a 100°C dopo 45 minuti.

La verifica della volta è effettuata assottigliando la struttura di 50mm dopo 30 minuti di esposizione, di 65 mm dopo 45 minuti e di 75 mm dopo 60 minuti (tabella 4).

Tempo di esposizione alla curva ISO 834	30 minuti	45 minuti	60 minuti
Spessore di volta inefficace	50mm	65mm	75mm
Spessore di volta residuo	70mm	55mm	45mm
Spessore del nocciolo centrale di inerzia	23,3mm	18,3mm	15,0mm

Tabella 4 – Caratteristiche delle sezioni residue della volta muraria esposta alla curva standard per 30 e 60 minuti

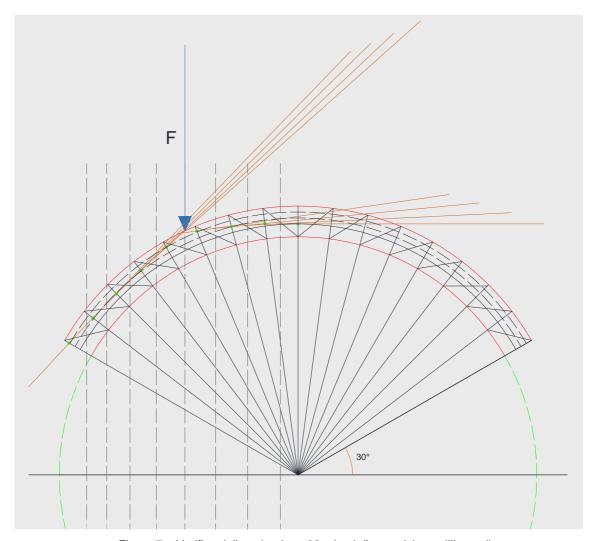


Figura 7 – Verifica della volta dopo 30 minuti di esposizione all'incendio

Dopo 30 minuti di esposizione alla curva ISO 834 la volta risulta parzializzata in corrispondenza della sezione di applicazione del carico, alle reni ed in chiave (figura 7). Il poligono

funicolare è posizionato in maniera tale da ottimizzare la parzializzazione delle sezioni. Per tale motivo si effettua cautelativamente la verifica della struttura in corrispondenza delle reni, dove si ha la massima risultante ed una distanza dal bordo superiore della volta (u) di 20mm.

La massima tensione di compressione è pari a:

$$\sigma_{\text{max}} = 2P/(3u \cdot L) = 2 \cdot 16080/(3 \cdot 20 \cdot 2000) = 0.27 \text{N/mm}^2 (< f_{d.fi} = 10.4 \text{N/mm}^2).$$

La volta è verificata. È possibile che dopo 30 minuti di esposizione si manifestino delle fessurazioni all'estradosso o all'intradosso della volta.

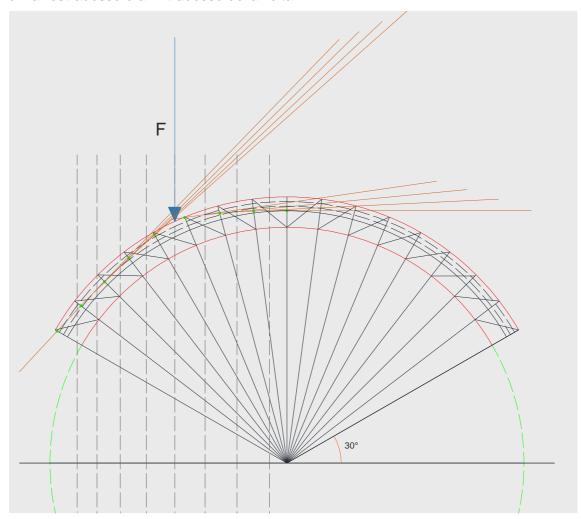


Figura 8 – Verifica della volta dopo 45 minuti di esposizione all'incendio

Dopo 45 minuti le sezioni si parzializzano ulteriormente e si riduce il margine di sezione resistente (figura 8). Il poligono funicolare, traslato in maniera tale da ottimizzare la parzializzazione delle sezioni, determina una distanza minima dal bordo delle risultanti (u) di 2mm.

La massima tensione di compressione è pari a:

$$\sigma_{max} = 2P/(3u \cdot L) = 2 \cdot 16080/(3 \cdot 2 \cdot 2000) = 2,7N/mm^2 \ (< f_{d,fi} = 10,4N/mm^2). \ La \ volta \ \grave{e} \ verificata.$$

Dopo 60 minuti di esposizione al fuoco il poligono funicolare presenta dei tratti esterni alla sezione resistente (figura 9). Per tale motivo la sezione è da considerarsi priva di resistenza al fuoco.

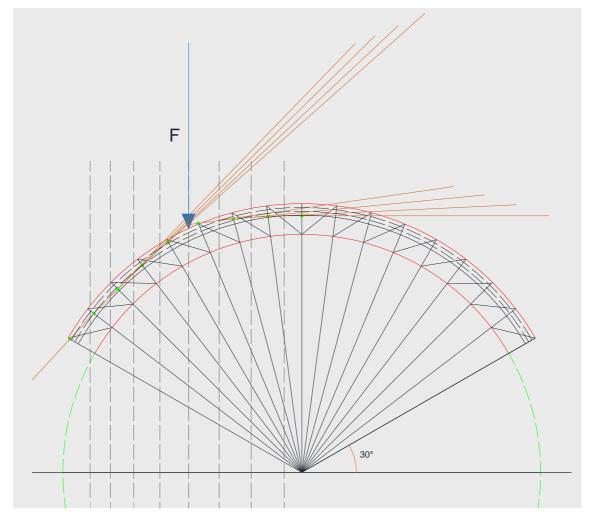


Figura 9 – Andamento del poligono funicolare dopo 60 minuti di esposizione all'incendio

La volta in mattoni pieni di laterizio, spessa 12cm e caricata con due forze concentrate da 9,2 kN a 50 cm dall'asse, è di 45 minuti (R45).

2.6 Progettazione della centina

La progettazione della centina è effettuata impiegando il vademecum STOP [5]. In particolare, vista la luce inferiore a 3 metri, si sceglie lo schema C1 con ritto lignei 10x10cmxcm. La figura 10 mostra lo schema della centina tratto dal vademecum STOP, la figura 11 illustra un esploso assonometrico per la realizzazione della centina C1.

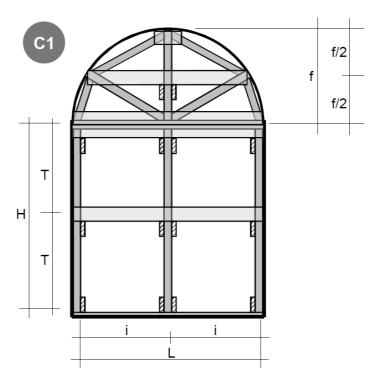


Figura 10 – Schema della centina lignea C1 [5]

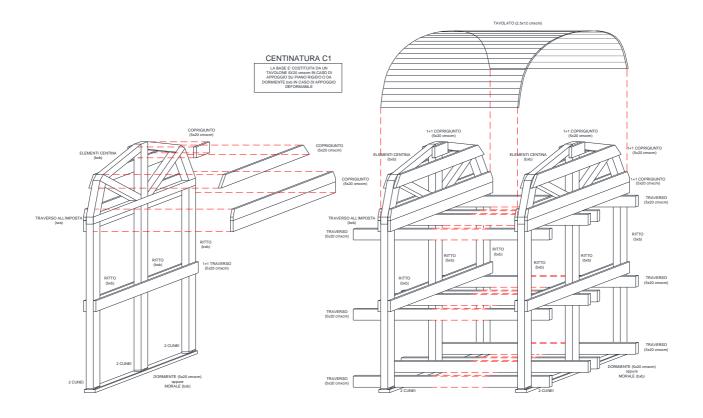


Figura 11 – Esploso assonometrico della centina lignea C1 [5]

2.7 Realizzazione della centina e della volta

Le figure da 12 a 59 mostrano le fasi ed i tempi di realizzazione della volta da sottoporre a prova.

29/4/2015 – figura 12 Completamento della parte sommitale della prima centina

29/4/2015 – figura 13 Particolare del nodo inferiore

4/5/2015 – figura 14 Prova di accoppiamento di due centine

4/5/2015 – figura 15 Prova di accoppiamento di tre centine

5/5/2015 – figura 16 Predisposizione del tavolato di appoggio della volta

6/5/2015 – figura 17 Completamento del tavolato di appoggio della volta

11/5/2015 – figura 18 Inizio realizzazione piedritti centina

11/5/2015 – figura 19 Fasi di realizzazione piedritti centina

11/5/2015 – figura 20 Completamento realizzazione piedritti centina

11/5/2015 – figura 21 Imbragatura della centina e collegamento al carroponte

12/5/2015 – figura 22 Issaggio della centina

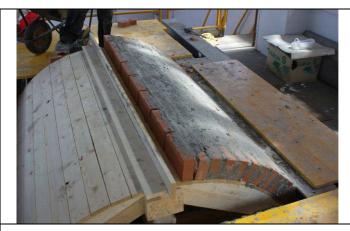
12/5/2015 – figura 23 Sollevamento completo della centina

12/5/2015 – figura 24
Posizionamento della centina nel forno orizzontale

12/5/2015 – figura 25 Calo della centina nella bocca del forno orizzontale

12/5/2015 – figura 26 Posizionamento definitivo della centina nella bocca del forno orizzontale

12/5/2015 – figura 27 Vista della centina dall'interno del forno orizzontale


13/5/2015 – figura 28 Inizio della realizzazione della prima metà volta muraria a partire dalla sezione di imposta alle reni

14/5/2015 – figura 29 Prosecuzione della realizzazione della volta muraria

14/5/2015 – figura 30 Completamento della prima metà della volta muraria

15/5/2015 – figura 31 Inizio della realizzazione della seconda metà volta muraria a partire dalla sezione di imposta alle reni

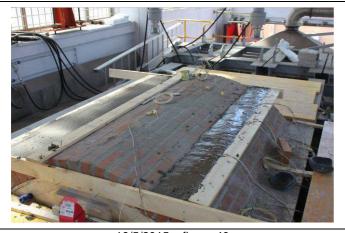
15/5/2015 – figura 32 Posizionamento delle termocoppie interne in corrispondenza della sezione di imposta alle reni

15/5/2015 – figura 33 Posizionamento delle termocoppie interne in corrispondenza della sezione di imposta alle reni

18/5/2015 – figura 34 Vista delle termocoppie interne in corrispondenza della sezione di applicazione del carico

18/5/2015 – figura 35
Particolare dei cavi compensati delle termocoppie interne in corrispondenza della sezione di applicazione del carico (n. 3 per sezione di misura)

18/5/2015 – figura 36 Chiusura della chiave della volta


19/5/2015 – figura 37 Vista dei cavi compensati delle termocoppie interne alla volta

19/5/2015 – figura 38 Applicazione delle termocoppie sulla faccia non esposta con colla ceramica

19/5/2015 – figura 39 Predisposizione di spallette in legno per getto cordolo di ripartizione del carico (vista degli spinotti di ancoraggio Ø8)

19/5/2015 – figura 40 Getto dei cordoli di ripartizione del carico (vista degli spinotti di ancoraggio Ø8)

21/5/2015 – figura 41
Posizionamento di prova dei martinetti del sistema di carico (spinta su trave di contrasto)

26/5/2015 – figura 42 Sistema di ripartizione del carico concentrato (profilo a L, piatto in acciaio e tavolone di legno)

26/5/2015 – figura 43
Sistema di ripartizione del carico concentrato (profilo a L, piatto in acciaio e tavolone di legno)

26/5/2015 – figura 44
Posizionamento di uno dei due trasduttori ottici di spostamento, distanziometro (in chiave ed all'appoggio)

26/5/2015 – figura 45 Particolare della testa semisferica di applicazione del carico

26/5/2015 – figura 46 Vista di assieme dall'alto della bocca forno orizzontale

10/6/2015 – figura 47 Inizio rimozione della centina

10/6/2015 – figura 48 Rimozione della centina

10/6/2015 – figura 49 Rimozione del tavolato

10/6/2015 – figura 50 Completamento della scasseratura e vista dall'alto della volta

10/6/2015 – figura 51 Vista all'intradosso della volta prima della stilatura dei giunti

10/6/2015 – figura 52 Vista frontale della volta

15/6/2015 – figura 53 Inizio tamponatura del forno

16/6/2015 – figura 54 Esecuzione tamponatura forno con lana di roccia e cartongesso

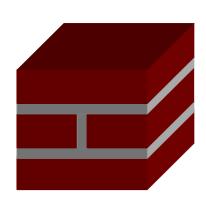
16/6/2015 – figura 55 Tamponatura frontale della volta con lana di roccia e cartongesso

16/6/2015 – figura 56 Tamponatura frontale della volta con lana di roccia e cartongesso (vista interna)

16/6/2015 – figura 57 Tamponatura del forno (vista dall'intradosso della volta. Si noti la stilatura dei giunti di malta)

23/6/2015 – figura 58 Completamento della tamponatura del forno orizzontale

23/6/2015 – figura 59 Completamento della tamponatura del forno orizzontale (riposizionamento delle termocoppie piatte guida forno)



2.8 Verifica sperimentale delle caratteristiche dei materiali

Il giorno 15/6/2015, a distanza di più 28 giorni dall'esecuzione di tre provini di muratura (4 maggio 2015), si sono effettuate tre prove di compressione semplice (figura 60) sui campioni finalizzate alla verifica della resistenza a compressione della muratura stimata in 10,4N/mm².

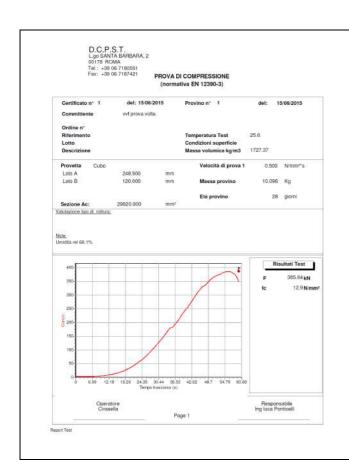
I tre provini sono costituiti da tre strati di mattoni pieni:

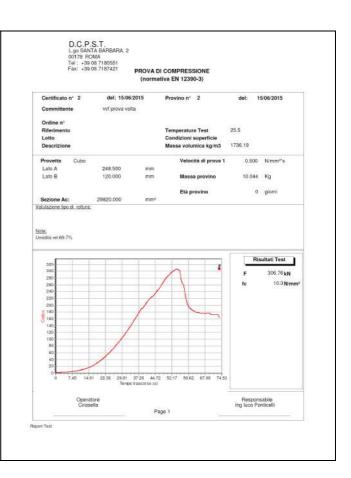
Provino 1: 248,5mm x 120,0mm x 19,6mm

A: $298,2cm^2$; V = $5,84dm^3$;

P = 10,096kg; $\rho = 1727,37$ kg/m³

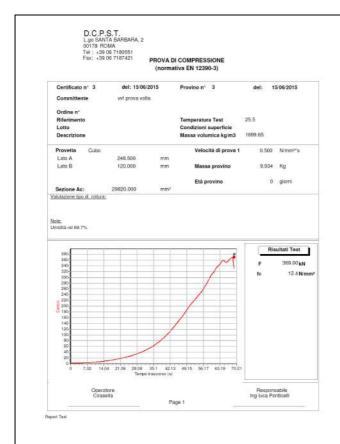
Provino 2: 248,5mm x 120,0mm x 19,4mm


A: 298,2cm²; V = 5,81dm³;


P = 10,044kg; $\rho = 1736,19$ kg/m³

Provino 3: 248,5mm x 120,0mm x 19,6mm

A: $298,2cm^2$; $V = 5,85dm^3$;


 $P = 9,934kg; \rho = 1699,65kg/m^3$

Riassunto esiti di prova:

Provino 1: $N_{max} = 385,64kN$; $\sigma_{max} = 12,9N/mm^2$

Provino 2: $N_{max} = 306,76kN$; $\sigma_{max} = 10,3N/mm^2$

Provino 3: $N_{max} = 369,00kN$; $\sigma_{max} = 12,4N/mm^2$

Resistenza media: $f_m = 11,8N/mm^2$

$$\begin{split} f_k &= f_m - k \cdot s \\ s &= \{[(12.9 - 11.8)^2 + (10.3 - 11.8)^2 + (12.4 - 11.8)^2]/2\}^{1/2} \\ &= [(1.21 + 2.25 + 0.36)/2]^{1/2} = 1.4 \text{N/mm}^2 \end{split}$$

Assumendo k = 2,7 (interpolazione dei valori NTC 2008):

$$f_k = 11.8 - 2.7 \cdot 1.4 = 8.0 \text{N/mm}^2$$

Le massime tensioni di progetto sono ovunque inferiori al valore caratteristico riscontrato sui provini.

Figura 60 – Esiti delle prove di compressione sui provini di muratura

Nelle figure da 61 a 67 sono riportate le immagini relative ai test condotti sui provini in muratura:

15/06/2015 – figura 61 Macchina di prova a compressione (Laboratorio della D.C.P.S.T.)

15/06/2015– figura 62 Provino n. 1 tra i piatti della pressa

15/06/2015– figura 63 Provino n. 1 in condizioni di rottura (σ_{max} = 12,9N/mm²)

15/06/2015– figura 64 Provino n. 2 tra i piatti della pressa

15/06/2015– figura 65 Provino n. 2 in condizioni di rottura (σ_{max} = 10,3N/mm²)

15/06/2015– figura 66 Provino n. 3 tra i piatti della pressa

15/06/2015– figura 67 Provino n. 3 in condizioni di rottura (σ_{max} = 12,4N/mm²)

2.9 Verifica sperimentale della volta in condizioni di incendio standardizzate

La verifica sperimentale della volta esposta al fuoco è effettuata valutando:

- la capacità portante R mediante misura dell'abbassamento e della velocità di abbassamento;
- l'isolamento termico mediante la predisposizione di termocoppie sulla faccia non esposta
- la tenuta mediante posizionamento di tampone di cotone

Ai fini della verifica dei requisiti REI della volta si seguono i criteri di cui alla norma EN 1363-1:2012 [9]. In particolare:

la velocità di abbassamento limite è posta pari a: $v_{lim} = L^2/9000d$ essendo:

- L la luce della volta (L = 1610mm)
- d lo spessore della volta (d = 120mm)

Pertanto:

$$v_{lim} = 1610^2/(9000 \cdot 120) = 2,4$$
mm/min

Non si propone il criterio della freccia limite in quanto valido per strutture inflesse piane e non presso inflesse ed arcuate come nel caso di specie.

La numerazione delle termocoppie segue la seguente logica:

Da 1 a 3: in asse all'intradosso

Da 10 a 12: sotto il carico all'intradosso

Da 19 a 21: alle reni all'intradosso

Da 4 a 6: in asse a 5 cm dall'intradosso

Da 13 a 15: sotto il carico a 5 cm dall'intradosso

Da 22 a 24: alle reni a 5 cm dall'intradosso

Da 7 a 9: in asse a 7 cm dall'intradosso

Da 16 a 18: sotto il carico a 7 cm dall'intradosso

Da 25 a 27: alle reni a 7 cm dall'intradosso

Da 28 a 30: in asse all'estradosso

Da 32 a 34: : sotto il carico all'estradosso (manca il canale 31)

Da 81 a 84 e da 91 a 94 Termocoppie guida forno

Nella figura 68 si riporta lo schema con il posizionamento e la numerazione delle termocoppie:

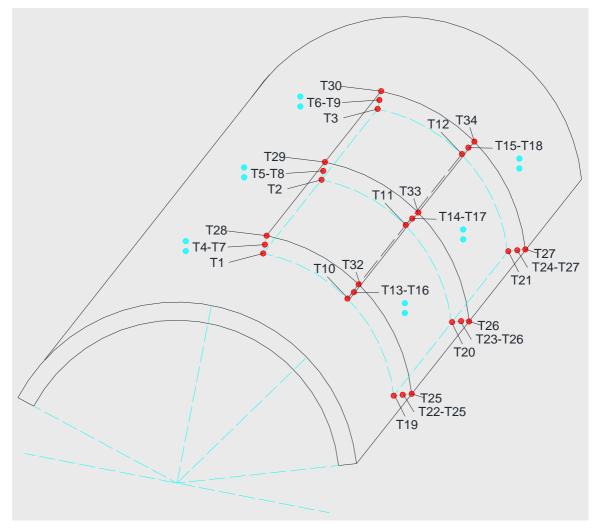


Figura 68 – Schema con il posizionamento e la numerazione delle termocoppie applicate alla volta (vista assonometrica)

La prova è stata condotta per 55 minuti, sufficienti a studiare il comportamento della struttura oltre il massimo tempo di resistenza al fuoco calcolato (45 minuti).

In figura 69 è riportato l'andamento delle temperature nel forno. Come si vede, la curva media ottenuta è contenuta nel fuso di tolleranza della ISO 834 [9] fino a poco più di 52 minuti di prova:

ANDAMENTO DELLE TEMPERATURE NEL FORNO

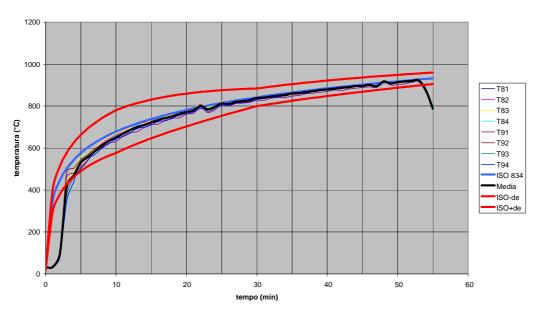


Figura 69 – Andamento delle temperature nel forno sperimentale

In figura 70 è riportato l'andamento dell'incremento delle temperature sulla faccia non esposta. Come si mede il massimo incremento risulta in chiave (T30) ed è inferiore a 40°C:

Incremento delle temperature sulla faccia non esposta

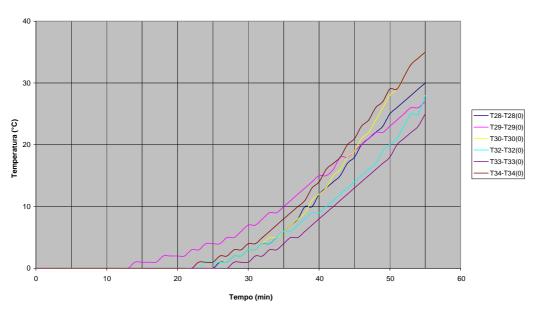


Figura 70 – Andamento dell'incremento delle temperature sulla faccia non esposta

In figura 71 è riportato l'andamento dell'incremento delle temperature all'intradosso: è evidente la regolarità delle curve che testimonia l'assenza di crolli.

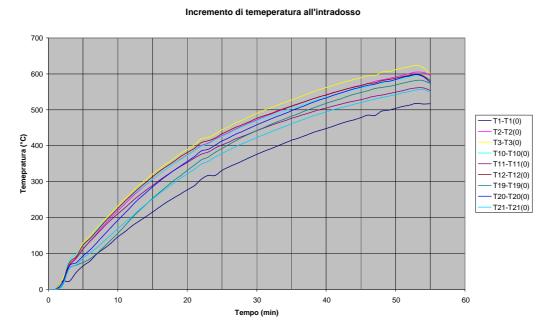


Figura 71 – Andamento dell'incremento delle temperature all'intradosso

In figura 72 è riportato l'andamento dell'incremento delle temperature a 5cm dall'intradosso: la termocoppia 8 (in chiave) supera il valore di 100°C dopo circa 30 minuti, in ottimo accordo con quanto riportato nel grafico di figura 6, mentre le altre termocoppie si sono tenute al disotto di tale valore fino al 45° minuto.

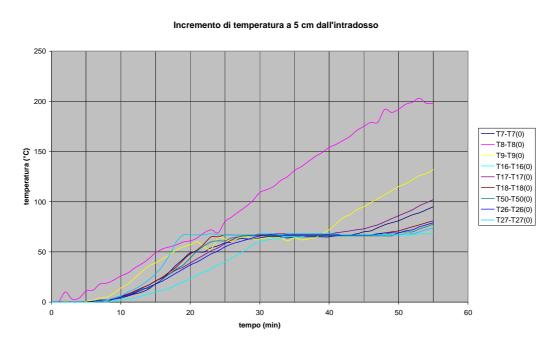


Figura 72 – Andamento dell'incremento delle temperature a 5 cm dall'intradosso

In figura 73 è riportato l'andamento dell'incremento delle temperature a 7,5cm dall'intradosso: si noti che le termocoppie 22 e 24 (alle reni) non sono rappresentate in quanto non hanno fornito alcuna registrazione. La termocoppia 5 (in chiave) ha superato il valore di 100°C intorno al 45° minuto, in anticipo rispetto a quanto riportato nel grafico di figura 6, mentre le altre termocoppie si sono tenute al disotto di tale valore per tutta la durata della prova.

Incremento di temperatura a 7,5 cm dall'intradosso 140 120 100 T4-T4(0) temeperatura (°C) T5-T5(0) T6-T6(0) T13-T13(0) T14-T14(0) T15-T15(0) T23-T23(0) 40 20 0 tempo (min)

Figura 73– Andamento dell'incremento delle temperature a 7,5 cm dall'intradosso

Durante l'esecuzione della non è mai stata superata la velocità di deformazione limite calcolata. Dalla tabella 5 si nota un abbassamento massimo di 12,83 mm al carico ed un inarcamento massimo di 4,48 mm in chiave. Durante la prova non si sono registrate perdite di tenuta o collassi di parti.

Tempo (min)	Lettura in corrispondenza del carico (mm)	Lettura in chiave (mm)	V _{al carico} (mm/min)	V _{in chiave} (mm/min)
28	9,3	-3,98		
32	9,8	-4,48	0,13	0,13
34	10,3	-4,48	0,25	0,00
36	10,55	-4,48	0,13	0,00
38	10,81	-4,23	0,13	0,13
39	11,31	-4,48	0,50	0,25
45	12,18	-4,23	0,15	0,04
48	12,31	-3,65	0,04	0,19
52	12,83	-4,46	0,13	0,20

Tabella 5 – Andamento delle frecce

Nelle figure da 74 a 76 sono riportate le immagini del sistema sottoposto a prova prima e dopo l'esecuzione del test.

06/07/2015– figura 74 Esecuzione della prova (applicazione e controllo del carico)

06/07/2015– figura 75
Esecuzione della prova (manifestazione di fessurazioni all'estradosso in corrispondenza della chiave)

13/07/2015– figura 76 Vista volta all'intradosso (post prova). Si nota la lesione longitudinale in prossimità della sezione di mezzeria

3 CONCLUSIONI

La prova condotta il 6/7/2015 presso il forno sperimentale dell'Area Protezione Passiva della DCPST del Corpo Nazionale dei Vigili del Fuoco ha dimostrato che il metodo di calcolo semplificato di cui all'Eurocodice EN 1996-1-2 (annesso C) [3] integrato dall'applicazione della circolare DCPREV 4638 [2] è *cautelativo*. La volta ha infatti resistito a più dei 45 minuti calcolati.

Il metodo, inoltre, ha consento di associare al requisito R anche il requisito I in quanto l'isoterma considerata (100°C) è nettamente al di sotto del limite imposto per tale requisito (140°C come incremento di temperatura media).

Si ritiene inoltre che il requisito R garantisca anche nei confronti del requisito E in quanto la formazione di fessure all'estradosso della volta implica la chiusura delle stesse all'intradosso e viceversa: solo il collasso strutturale può dunque determinare la perdita di tutti e tre i requisiti.

La volta testata è classificabile REI 45

4 PROSPETTIVE FUTURE

Il test effettuato presso il forno sperimentale di resistenza al fuoco dei Vigili del Fuoco ha avuto come obiettivo quello di verificare l'affidabilità di un metodo di calcolo strutturale pensato per altri elementi costruttivi (pareti e colonne murarie) ed adattato alle volte a botte di cui il panorama edilizio italiano è ricchissimo.

La dimostrazione della fattibilità di una prova innovativa come quella effettuata, apre la strada verso la prosecuzione di una campagna sperimentale tesa a verificare ed a perfezionare il metodo proposto con possibili applicazioni a volte realizzate in pietra naturale o in cls, ribassate e non, di forma generica e dotate di rinfianco.

In futuro non si escludono collaborazioni con i dipartimenti di strutture delle Università, con Ordini e Collegi professionali e con il settore privato al fine di migliorare i protocolli sperimentali ideati per la circostanza e promuovere gli stessi in ambito scientifico nazionale ed internazionale.

5 RINGRAZIAMENTI

Si ringrazia il personale del settore resistenza al fuoco della DCPST per l'impegno profuso e per la professionalità dimostrata nell'esecuzione di una prova sperimentale senza precedenti.

06/07/2015– figura 77 da sinistra: Csq G. Polidori CSq G. Cirasella Ing. L. Ponticelli Ing. C. Mastrogiuseppe Ing. C. Pulito

OE C. Cicchetti

06/07/2015– figura 78 Il Direttore della DCPST (ing. C. Pulito) dà avvio alla prova

Per l'esecuzione della prova ci si avvale del personale assegnato al settore resistenza al fuoco dal dirigente dell'Area Protezione Passiva della D.C.P.S.T., ing. Claudio Mastrogiuseppe, di seguito elencato:

DVD ing. Luca Ponticelli ideatore, progettista e responsabile della prova Cqe Giuseppe Cirasella responsabile dell'esecuzione delle lavorazioni.

Cqe Giuseppe Polidori segreteria tecnica.

OE Claudio Cicchetti responsabile dell'acquisizione dei dati sperimentali.

OE Maurizio Visca tecnico elettronico.

OE Manfredi Cicerchia esecutore delle lavorazioni.
OE Giuseppe Righi esecutore delle lavorazioni.
OE Alessandro Esposito esecutore delle lavorazioni.
OP Aldo Magnapera esecutore delle lavorazioni.

6 RIFERIMENTI BIBLIOGRAFICI

- [1] D.M. 16/02/2007: "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di o pere da costruzione".
- [2] Circolare del Ministero dell'Interno DCPREV n. 4638 del 5/4/2015 "Pubblicazione in Gazzetta Ufficiale degli Annessi Nazionali degli Eurocodici".
- [3] EN 1996-1-2: "Eurocode 6: Design of masonry structures Part 1-2: General rules Structural fire design".
- [4] D.M. 14/01/2008: "Norme tecniche per le costruzioni" (NTC 2008).
- [5] S. Grimaz et alii "Vademecum STOP. Schede Tecniche Opere Provvisionali" Ed. Vigili del fuoco (2010, www.vigilfuoco.it)
- [6] P.G. Hodge Jr "Plastic analysis of structures" McGraw-Hill Book Company Inc. 1959.
- [7] V. Franciosi "Scienza delle costruzioni".
- [8] Decreto del Ministro delle Infrastrutture e dei Trasporti 31 luglio 2012 "Approvazione delle Appendici nazionali recanti i parametri tecnici per l'applicazione degli Eurocodici.".
- [9] EN 1363-1:2012 "Fire resistance tests Part 1: general requirements".

APPENDICE - TABULATI SPERIMENTALI

Tempo	T81	T82	T83	T84	T91	T92	T93	T94
(min)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)
0	32	32	32	33	31	31	31	33
1	33	33	33	34	32	32	32	34
2	102	98	88	85	99	102	78	76
3	430	428	440	344	463	487	377	349
4	468		484	439	480	504	463	
	502	472						440
5		525	560	542	510	544	533	533
6 7	541	559	570	556	543	568	563	552
	584	593	594	575	582	597	585	570
8	604	622	630	615	598	617	612	600
9	632	646	649	634	624	637	633	621
10	643	663	670	659	631	649	651	644
11	666	681	681	669	658	673	666	655
12	687	700	698	688	674	688	681	671
13	692	711	720	712	678	697	700	695
14	709	721	717	709	698	713	709	698
15 16	719 726	732 744	734 751	722	713 714	725 731	722 735	710 727
				743				
17	745	754	751	741	733	744	742	730
18 19	750 755	759 772	758 777	750 770	743 744	753 761	751 764	741 759
20	770	778	777	770	744	771		763
21	777	788	790	782	762	771	770 779	772
22	804	809	806	797	793	805	797	788
23	776	789		790	793	784	788	783
24	789	801	795 805	800	770	793	799	793
25	812	820	820	813	806	814	808	801
26	808	814	813	812	801	810	809	803
27	816	824	827	822	812	821	820	815
28	823	829	829	825	814	823	823	816
29	831	837	837	832	818	828	826	821
30	836	845	846	840	828	839	837	831
31	837	847	850	846	828	837	839	836
32	846	851	849	846	837	844	845	841
33	850	856	854	851	841	850	849	842
34	848	858	861	860	840	851	854	852
35	857	864	868	866	848	856	861	860
36	859	868	870	866	851	858	862	860
37	868	873	870	868	859	865	865	861
38	868	876	877	875	862	870	871	869
39	874	879	883	882	866	874	876	875
40	878	883	885	884	870	877	878	876
41	882	887	885	884	877	882	882	878
42	885	893	895	893	874	883	888	888
43	890	896	896	893	881	887	889	886
44	895	900	901	899	885	893	894	893
45	895	901	898	897	889	897	894	892
46	898	905	907	904	891	899	900	900
47	891	896	892	890	890	895	901	890
48	919	923	923	917	914	919	913	910
49	908	912	910	909	901	908	907	904
50	911	918	920	919	901	910	915	914
51	917	922	924	922	906	914	916	915
52	921	925	923	922	914	918	917	914
53	922	927	926	924	915	920	921	920
54	871	879	877	874	865	872	882	873
55	787	790	785	777	782	785	801	789
			T-1-11		 			

Tabella 6 – Temperature guida forno

Tempo	T1-T1(0)	T2-T2(0)	T3-T3(0)	T4-T4(0)	T5-T5(0)	T6-T6(0)	T7-T7(0)	T8-T8(0)	T9-T9(0)
(min)	(°C)								
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
2	23	11	27	0	16	1	1	10	1
3	22	63	71	0	5	0	0	3	0
4	47	86	92	0	8	0	0	4	0
5	65	112	129	0	17	1	1	11	1
6	79	134	149	0	18	1	1	12	2
7	99	156	171	0	24	1	2	18	4
8	113	179	192	0	24	1	2	19	5
9	128	199	211	1	23	2	3	22	9
10	146	218	232	1	28	3	4	26	14
11	160	238	252	1	29	3	6	29	18
12	176	257	270	1	31	5	8	34	24
13	189	274	289	2	32	6	10	38	30
14	202	291	304	2	35	7	13	43	36
15	215	306	321	2	40	9	18	49	39
16	229	321	336	3	42	11	23	53	43
17	242	335	350	4	43	13	30	55	47
18	254	349	363	6	45	15	37	57	52
19	265	362	378	7	47	18	43	60	55
20	277	374	389	9	48	20	49	61	57
21	288	386	402	11	47	22	50	64	60
22	306	400	419	14	51	29	50	69	55
23	317	407	423	17	51	39	54	72	53
24	317	418	432	17	45	31	56	69	64
25	331	428	444	19	53	37	59	80	63
26	341	437	453	22	55	46	60	85	60
27	349	447	464	24	60	45	63	90	64
28	358	455	472	27	62	50	63	95	65
29	367	464	481	30	64	56	63	101	63
30	376	472	490	34	68	58	64	109	63
31	384	480	498	36	68	60	65	112	64
32	391	487	505	39	70	62	65	115	64
33	399	495	513	43	74	63	65	121	64
34	407	502	520	48	76	62	64	125	61
35	415	509	527	50	79	63	65	131	64
36	421	516	534	54	81	63	65	135	62
37	428	523	542	56	83	62	65	140	63
38	436	530	549	58	86	61	65	145	64
39	442	536	556	59	88	61	65	149	68
40	448	542	562	60	93	62	65	154	72
41	454	548	567	61	92	63	66	157	78
42	461	553	574	61	93	63	67	161	84
43	467	558	579	62	97	63	67	165	87
44	472	564	584	63	99	64	68	171	92
45	478	568	589	63	103	64	70	175	95
46	485	573	595	62	107	62	71	179	99
47	484	579	595	61	88	66	74	179	103
48	496	583	605	62	102	64	77	192	107
49	499	587	606	63	105	65	79	189	111
50	504	592	612	64	110	67	81	192	115
51	509	596	616	64	117	67	84	197	118
52	513	601	620	64	115	69	87	199	122
53	518	605	624	64	120	70	89	203	126
54	516	604	617	64	92	72	92	198	128
55	517	596	601	65	110	73	95	198	132

Tabella 7 – Incrementi di temperatura in chiave (estradosso escluso)

Tempo (min)	T10-T10(0) (°C)	T11-T11(0) (°C)	T12-T12(0) (°C)	T13-T13(0) (°C)	T14-T14(0) (°C)	T15-T15(0) (°C)	T16-T16(0) (°C)	T17-T17(0) (°C)	T18-T18(0) (°C)
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
2	15	10	18	0	0	0	0	0	0
3	79	66	73	0	0	0	0	0	0
4	98	87	91	0	0	0	0	0	0
5	121	112	123	0	0	0	0	0	0
6	143	134	142	0	0	0	0	0	0
7	166	154	163	0	0	0	0	1	1
8	187	174	185	0	0	0	0	2	2
9	206	193	205	0	0	0	1	3	4
10	225	210	225	0	0	0	2	5	6
11	245	227	245	0	0	0	3	8	8
12	262	244	263	0	1	1	4	10	11
13	276	260	281	0	2	1	6	14	14
14	292	275	297	1	3	2	8	17	17
15	307	289	313	2	5	3	10	21	21
16	321	304	329	2	7	4	12	24	25
17	335	317	342	3	8	5	14	28	30
18	349	330	355	4	10	7	17	32	35
19	361	342	369	5	12	8	20	35	42
20	373	353	381	6	14	10	23	39	48
21	385	365	392	8	16	12	27	43	52
22	398	376	408	9	18	15	30	47	58
23	404	382	414	11	20	17	33	51	65
24	416	393	421	13	22	20	37	54	65
25	425	402	433	14	24	23	40	58	67
26	434	410	442	16	27	26	44	62	67
27	444	419	451	18	29	30	48	65	67
28	453	426	459	20	31	33	52	66	67
29	461	434	467	22	34	38	57	67	67
30	469	442	476	25	36	43	60	67	67
31	476	449	483	27	38	47	62	67	67
32	483	456	489	30	41	52	63	68	67
33	490	463	497	33	43	57	64	68	67
34	497	469	504	35	46	63	65	68	67
35	503	476	510	38	48	66	65	68	67
36	509	482	517	41	50	67	65	68	67
37	516	488	523	44	53	67	66	68	67
38	523	494	530	46	55	67	66	68	67
39	529	500	536	49	58	67	67	68	67
40	535	505	541	51	60	67	67	68	67
41	540	510	547	54	63	67	67	69	67
42	545	515	553	56	65	67	67	70	67
43	551	520	558	59	66	67	67	71	67
44	556	524	563	61	67	67	67	72	67
45	560	528	567	63	67	67	67	73	67
46	565	533	573	65	67	67	67	75	67
47	571	538	575	65	67	68	67	77	68
48	575	541	581	67	67	67	67	80	69
49	578	545	584	67	67	67	67	83	70
50	583	549	588	67	67	67	67	86	71
51	587	553	592	67	67	67	67	89	73
52	591	558	596	67	67	67	67	92	75
53	595	561	600	67	67	68	68	96	77
54	593	561	594	67	67	67	68	99	79
55	582	554	581	67	67	67	68	102	81

Tabella 8 – Incrementi di temperatura in corrispondenza del carico (estradosso escluso)

Tempo (min)	T19-T19(0) (°C)	T20-T20(0) (°C)	T21-T21(0) (°C)	T22-T22(0)	T23-T23(0) (°C)	T24-T24(0) (°C)	T50-T50(0) (°C)	T26-T26(0) (°C)	T27-T27(0) (°C)
0	0	0	0		0		0	0	0
1	0	0	0		0		0	0	0
2	11	18	9		0		0	0	0
3	58	65	57		0		0	0	0
4	67	74	68		0		0	0	0
5	75	93	87		0		0	0	0
6	85	110	101		0		0	0	0
7	100	130	116		0		0	1	1
8	118	151	134		0		0	2	2
9	137	172	151		0		3	3	4
10	156	192	169		0		4	5	6
11	177	212	186		1		7	7	10
12	198	232	202		1		9	9	13
13	217	251	220		2		13	12	17
14	235	268	236		2		14	15	22
15	253	285	251		3		18	18	28
16	270	301	267		4		23	21	36
17	286	316	281		5		28	25	47
18	302	330	295		6		33	29	60
19	316	343	309		8		37	33	67
20	331	356	321		10		44	37	67
21	345	369	334		12		51	40	67
22	360	385	348		14		56	44	67
23	368	390	356		16		60	48	68
24	381	401	368		18		61	51	67
25 26	392 403	413 422	378 388		20 23		61 64	55 58	67
27	414	432	397		26		65	60	67 67
28	424	432	406		29		66	62	67
29	433	449	414		31		66	64	67
30	442	458	423		34		66	66	68
31	450	466	430		37		66	67	68
32	459	474	438		39		66	67	68
33	467	482	446		42		66	67	67
34	474	489	453		44		66	67	68
35	482	497	461		47		66	67	68
36	489	505	468		49		66	67	68
37	497	512	475		52		66	67	68
38	504	520	482		55		66	67	68
39	511	527	488		58		66	67	68
40	518	533	494		61		66	67	68
41	524	540	500		63		66	67	68
42	530	546	505		64		66	67	67
43	537	552	510		65		66	67	67
44	543	558	515		66		66	67	67
45	548	563	520		66		66	67	67
46	553	568	525		66		66	67	67
47	559	571	530		66		66	68	67
48	562	577	534		67		66	68	68
49	565	579	538		67		66	69	67
50	569	584	542		67		69	69	67
51	574	590	547		67		70	71	68
52	578	594	551		67		70	72	68
53	582	598	555		67		73	75	70
54	581	592	556		67		75	77	72
55	573	576	549		67		78	79	74

Tabella 9 – Incrementi di temperatura in corrispondenza del carico (estradosso escluso)

Tempo (min)	T28-T28(0) (°C)	T29-T29(0) (°C)	T30-T30(0) (°C)	T32-T32(0) (°C)	T33-T33(0) (°C)	T34-T34(0) (°C)
0	0	0	0	0) O	O O
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0
7	0	0	0	0	0	0
8	0	0	0	0	0	0
9	0	0	0	0	0	0
10	0	0	0	0	0	0
11	0	0	0	0	0	0
12	0	0	0	0	0	0
13	0	0	0	0	0	0
14	0	1	0	0	0	0
15	0	1	0	0	0	0
16	0	1	0	0	0	0
17	0	1	0	0	0	0
18	0	2	0	0	0	0
19	0	2	0	0	0	0
20	0	2	0	0	0	0
21	0	2	0	0	0	0
22	0	3	0	0	0	0
23	0	3	0	0	0	1
24	0	4	1	1	0	1
25	0	4	1	1	0	1
26	1	4	1	1	0	2
27	1	5	1	1	0	2
28	2	5	2	2	1	3
29	2	6	2	2	1	3
30	3	7	3	3	1	4
31	3	7	3	3	2	4
32	4	8	4	4	2	5
33	4	9	5	4	3	6
34	5	9	5	5	3	7
35	6	10	6	6	4	8
36	7	11	7	6	5	9
37	8	12	8	7	5	10
38	10	13	9	8	6	11
39	10	14	11	9	7	13
40	12	15	12	9	8	14
41	13	15	13	10	9	16
42	14	16	15	11	10	17
43	15	18	16	12	11	18
44	17	18	18	13	12	20
45	18	19	19	14	13	21
46	20	20	21	15	14	23
47	21	21	22	16	15	24
48	22	22	24	17	16	26
49	23	22	26	19	17	27
50	25	23	28	20	18	29
51	26	24	29	21	20	29
52	27	25	31	23	21	31
53	28	26	33	25	22	33
54	29	26	34	25	23	34
55	30	27	35	28	25	35

Tabella 10 – Incrementi di temperatura sulla faccia non esposta